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NASA has established a far-reaching and long-term program for robotic and 

manned exploration of the solar system, beginning with missions to the moon and Mars. 
Integrated System Health Management (ISHM) will be key to improving the reliability, 
operability and maintainability of many of the systems deployed in this endeavor. 

The requirements of the ISHM systems themselves will be subject to requisite 
levels of Verification and Validation (V&V) and certification. The factors that most 
influence ISHM’s V&V and certification needs stem from two main sources – the system 
of which ISHM is a part, and the implementation of ISHM itself. The system of which 
ISHM is a part levies requirements on ISHM – for example, the need for ISHM to 
respond within a given time period with a stipulated level of confidence in the correctness 
of its response. These externally imposed requirements have far reaching implications for 
V&V and certification of ISHM. The combination of these requirements, coupled with 
the manner in which ISHM will be utilized, drive much of the V&V and certification 
process. Also highly influential is the nature of the ISHM implementation. Often it takes 
a combination of techniques to implement an ISHM system. These techniques include 
well-understood algorithms for low-level data analysis, validation and reporting; 
traditional capabilities for fault detection, isolation and recovery; and, at the more novel 
end, AI techniques for state estimation and planning. Detailed descriptions of these 
techniques are beyond the scope of this paper, and may be found elsewhere. Here we 
focus on their ramifications for V&V and certification. In particular, this range of 
techniques that will be utilized within an overall ISHM system impose internal 
challenges to V&V. 

The conjunction of these externally and internally influences on ISHM V&V and 
certification, and the challenges that stem from them, is the focus of this paper. We 
outline existing V&V approaches and analogs in other software application areas, and 
possible new approaches to the V&V challenges for space exploration ISHM.  

1 EXISTING SOFTWARE V&V AND CERTIFICATION 
PRACTICES 

There are many areas other than NASA where embedded systems exhibit a safety 
critical role, for example Avionics, Defense, Medical Devices, Nuclear Power, and 
Transportation. In this section we begin by looking at existing V&V and certification 
practices as seen in a representative one of these areas, Avionics. This area has many 
parallels to the safety- and mission-critical needs that predominate in NASA’s space 
activities. We then suggest that the existing NASA hierarchy of requirements, policies, 
standards and procedures relevant to software have close parallels with those seen in the 
other safety critical areas. 



1.1 Avionics V&V and Certification 
Safety-critical software for commercial aircraft undergoes certification by the 

FAA, which includes V&V in accordance with RTCA/DO-178B. This document is 
recognized as the means for evaluating software for compliance with the relevant Federal 
Aviation Regulations/Joint Aviation Regulations (FARs/JARs) for embedded systems in 
commercial aircraft. A useful paper providing interpretation of RTCA/DO-178B was 
prepared by a Boeing participant in the RTCA committee responsible for DO-187B. The 
paper describes the intent and rationale of DO-178B.  The derivation of the software 
approval guidelines from the Federal Aviation Regulations (FARs) to DO-178B is 
discussed in the paper to clarify its relationship to the government regulations. An 
explanation of the Designated Engineering Representative (DER) system is also provided 
in the paper along with a discussion of the safety process to describe the environment in 
which DO-178B is used.  

The DO-178B/ED-12B Software Verification Process defines specific verification 
objectives that must be satisfied; these include:  

a. Verification of software development processes, 
b. Review of software development life cycle data, 
c. Functional Verification of software 

i. Requirements-based testing and analysis 
ii. Robustness testing 

d. Structural Coverage Analysis  
Verification of the software development processes is accomplished by a 

combination of reviews and analyses.  For software requirements, these include reviews 
of the quality of the requirements themselves, a requirements trace from system-level to 
low-level (code), and checks of their compatibility with the hardware; verifiability; 
conformance with standards; accuracy, correctness and behavior of algorithms. The 
software architecture is reviewed and analyzed for compatibility with the high-level 
requirements and target hardware. Conformance of the software architecture to standards, 
verifiability, consistency and portioning integrity is also reviewed. The source code is 
also subjected to compliance and traceability to requirements. Conformance of the source 
code to standards, code verifiability, accuracy and consistency are also reviewed and 
analyzed. The integration process is verified by examination of the data and memory 
maps (detect memory overlaps or missing components).   

DO-178B section 11 stipulates a number of data requirements: plans, standards, 
procedures, and products (including the source code and executable code) that document 
this certification. These are: 

Plan for Software Aspects of Certification 
Software  Development Plan 
Software Verification Plan 
Software Configuration Management Plan 
Software Quality Assurance Plan 
Software Quality Assurance Plan 
Software Requirements Standards 
Software Design Standards 
Software Code Standards 
Software Requirements Data 



Software Design Description 
Source Code 
Executable Object Code 
Software Verification Cases and Procedures 
Software Verification Results 
Software Life Cycle Environment Configuration Index 
Software Configuration Index 
Problem Reports 
Software Configuration Management Records 
Software Quality Assurance Records 
Software Accomplishment Summary 
 
The review of software development life cycle data includes assessment of the 

test results, configuration management and quality assurance aspects for the development. 
The testing portion, due to its complexity is described in detail below. The control of the 
configuration of the software, including identification of configuration items, 
establishment of configuration item baselines, change control data, traceability 
throughout the development cycle is reviewed and analyzed. Problem reporting, tracking 
and corrective action records are reviewed for adequacy and verification of the change is 
confirmed via examination of configuration records. The software quality assurance 
records are reviewed to provide confidence that the software life cycle processes have 
been followed and that deficiencies encountered in the life cycle are detected, evaluated, 
tracked and resolved. 

 
Functional verification of the software is performed at three levels. (1) 

Hardware/software integration testing is performed to verify the correct operation of the 
software in the target computer environment. (2) Software integration testing verifies the 
interrelationships between software requirements and components and the 
implementation of the software components within the architecture. (3) The low-level 
testing verifies the implementation of software low-level requirements. These 
requirements-based tests are performed to verify correct functionality of the software in 
both normal range test cases and in robustness test cases. The normal case tests utilize 
valid and boundary values for inputs and exercises the transitions possible in normal 
operation. The robustness test cases inject invalid input values, values that would 
generate arithmetic overflows or attempt to provoke transitions that are not allowed. The 
software should follow expected behavior for the abnormal cases. 

 
Structural coverage analysis is generally perceived to be the most difficult task 

to undertake in the testing process. Furthermore, certifying real-time executable code 
with an operating system that is tightly integrated with the hardware, cache, interrupts, 
memory management, and process/task management, can make structural testing even 
more difficult. These low-level aspects create a significant challenge to the verification 
process. Three primary levels of structural testing are invoked according to the criticality 
level of the software (Table 2) in DO-178B certifications: 



• Statement Coverage (SC):  Every statement in the program has been invoked 
or used at least once. This is the most common use of the term “code 
coverage.”  

• Decision Coverage (DC): Every point of entry and exit in the program has 
been invoked at least once and that each decision in the program has been 
taken on all possible (Boolean) outcomes at least once. Essentially, this means 
that every Boolean statement has been evaluated both TRUE and FALSE. 

• Modified Condition Decision Coverage(MCDC): Every point of entry and 
exit in the program has been invoked at least once, that every decision in the 
program has taken all possible outcomes at least once, and that each condition 
in a decision has been shown to independently affect that decision's outcome. 
Complex Booleans need to have truth tables developed to set each variable 
(inside a Boolean expression) to both TRUE and FALSE. 

In DO-178B terms, software has a criticality level, ranging from the most critical 
(“Level A), down to “Level E”. Level A software requires all three levels of structural 
testing be performed.  

Performing this code coverage exercise is possible using manual methods, but this 
process is now readily facilitated by utilizing commercial code coverage tools. Numerous 
code coverage tool vendors now supply testing tools that create the appropriate test 
outputs to demonstrate and satisfy compliance with DO-178B.  

1.2 NASA Requirements, Policies, Standards and Procedures relevant 
to Software 

The current NASA Software Safety Standard is NASA-STD-8719.13b, dated July 
8, 2004, which applies to all safety-critical software acquired or produced by NASA. By 
reference this includes NASA Software Assurance Standard, NASA-STD-8739.8, dated 
July 28, 2004. This in turn includes by reference NASA NPR 7150.2, Sept. 27, 2004. The 
latter defines “Class A Human Rated Software Systems” as: 



Applies to all space flight software subsystems (ground and flight) 
developed and/or operated by or for NASA to support human activity in space 
and that interact with NASA human space flight systems. Space flight system 
design and associated risks to humans are evaluated over the program's life cycle, 
including design, development, fabrication, processing, maintenance, launch, 
recovery, and final disposal. Examples of Class A software for human rated space 
flight include but are not limited to: guidance; navigation and control; life support 
systems; crew escape; automated rendezvous and docking; failure detection, 
isolation and recovery; and mission operations. 
The classifications in NPR 7150.2 are important because, inter alia, the software 

engineering requirements, including V&V, depend on the classification. ISHM software 

is clearly Class A by this definition. 
Figure 1 - Relationships Among Governing Software Documents (from NPR 7150.2) 



NASA’s document NPR 7150.2, NASA Software Engineering Requirements, 
“provides a common set of generic requirements for software created and acquired by or 
for NASA...”  Included in this document is a summary of the requirements with respect to 
software created and acquired by NASA.  Figure 1, taken from this NPR, shows the 
relationships among the various relevant NASA requirements, policies, standards, 
procedures and guidance.  

The net result of these governing documents is an approach to V&V and 
certification that has close parallels with those followed in other safety-critical 
application areas. Indeed, NASA’s software working group is developing mappings 
between the NASA Software Engineering Requirements, NPR 7150.2, and select 
industry standards. A mapping to NASA’s Software Assurance Standard exists, and (at 
the time of writing), mappings to the Software Engineering Institute’s Capability 
Maturity Model Integration® (CMMI®), and to the Institute of Electrical and Electronics 
Engineers standard IEEE 12207, are “currently under review”. 

1.3 V&V for Spacecraft Fault Protection 
Fault Protection software on existing NASA robotic spacecraft is a special case of 

ISHM. In general, ISHM goes beyond such Fault Protection in two major aspects: the 
need for reasoning, primarily as a consequence of the state-space explosion, and, in many 
applications, the focus on maintaining capability rather than the simpler task of averting 
catastrophe. Nevertheless, it is worth first considering how V&V is performed for Fault 
Protection before turning attention to ISHM in general. 

Ideally, the development process of a spacecraft’s Fault Protection would start 
with a detailed fault tree/FMECA effort that produces a clear "fault set". A fault set it the 
list of faults that the spacecraft or system might be subjected to that can then be 
subdivided into a "protected fault set" and an "unprotected fault set". In order to establish 
which is which, the project needs a clear definition of the project’s fault tolerance is 
needed - is it to be single or dual fault tolerant? is the requirement to be fault tolerant or 
failure tolerant? etc. Having this fault set early in the life of the mission would provide 
the groundwork for the design and for risk trade offs as the hardware is selected. It would 
also provide a basis for the amount of redundancy selected for the hardware. Once the 
fault set is determined the fault injection requirements can be specified for the ground 
support equipment to be used to test the hardware and software. 

This would be the ideal approach – however, in practice, this rarely occurs in its 
ideal form. As helpful as it would be to have the full fault set early in the mission, the 
project often does not have resources to dedicate systems engineers to a thorough fault 
tree and FMECA effort in early design. Usually, one gets either a fault tree or a FMECA 
drafted. This means that in practice there is a initial fault set but it is often very partial. 
The same is true of the fault injection requirements, which in practice, will in the initial 
stages be only a partial set.  

To mitigate this reality, the best way is to ensure that both the fault set 
development and fault injection requirements identification are on-going processes with 
milestones at PDR, CDR and individual Fault Protection reviews so that the process can 
be kept somewhat current. 

Finally, the FP testing process is itself constrained by project priorities. There is a 
theoretical desire to begin FP testing early and have it stay in step with the other s/w and 



h/w testing. However, in practice the Fault Protection testing starts out with low priority, 
increasing as the overall testing program matures.  Logic dictates that in a prioritized 
environment, there is no need for fault protection testing until the core nominal h/w and 
s/w is working. As the testing progresses and confidence in the nominal system matures, 
then attention turns to the off-nominal cases in which fault protection plays a central role.  

Fault Protection testing has the same three levels of V&V as the other areas. It 
begins with – verifying the basic functionality of the fault protection software itself, that 
is, the fault protection governing software and the monitors and responses.  One of the 
detailed methods used to accomplish this is to “enable” the monitors as soon as possible 
after a flight software delivery to ensure maximum testing time of the ability to detect 
errors. The remediation functions are exercised later in the test process as they become 
available. This testing can range from basic fault testing to a more extreme “stress 
testing” that involves cascading faults, envelope testing and heavy concurrent load testing. 
The stress testing completes the triage of verifying requirements, validating capabilities 
and then stress testing to find out where the system truly fails. 

 

2 FEASIBILITY AND SUFFICIENCY OF EXISTING 
SOFTWARE V&V PRACTICES FOR ISHM 

In this section we consider whether the existing software development practices 
can feasibly be applied as-is to ISHM systems, and whether those practices would 
provide sufficient levels of confidence in ISHM systems. 

2.1 Feasibility 
NASA’s Human-Rating Certification process is defined in NPR 8705.2A 

(effective date: 2/7/2005). The objective of the human-rating certification process is to 
document that the critical engineering requirements, health requirements, and safety 
requirements have been met for a space system that provides “maximum reasonable 
assurance” that the system's failure will not result in a crew or passenger fatality or 
permanent disability. This NPR covers numerous aspects of certification, including 
certification of software. One of the software aspects covered is testing, where one 
requirement is: 

1.6.7.1 The Program Manager shall perform testing to verify and validate 
the performance, security, and reliability of all critical software across the entire 
performance envelope (or flight envelope) including mission functions, modes, 
and transitions. 
ISHM clearly contains “critical software” and hence is subject to this testing 

requirement. However, the very nature of ISHM poses significant challenges to meeting 
this requirement, above and beyond challenges shared by most forms of mission-critical 
software. Specifically, ISHM, by definition, deals with off-nominal conditions in each of 
its roles (it must recognize, diagnose and respond to: early indications of impending 
failure, the presence of performance degradations, and failures that have occurred). 
Several V&V challenges stem from this: it is hard to know that all the significant possible 
failure modes have been identified (especially for relatively novel components and for 
conventional components operating in novel conditions); for any given failure mode, its 



characteristics may not be well understood; there is a large number of ways in which off-
nominal conditions can arise (consider all the parts that could fail, and the varying 
implications of such failure depending on when in the mission it occurs), and the 
combinations of such failures are vastly more numerous. For example, if there are 1,000 
individual possible failures, then there are 1,000,000 pairs of such failures. This has 
specific relevance to the feasibility of meeting fault tolerance requirements that may be 
applicable. For example, another Human Rating requirement states: 

Requirement 34419. Space systems shall be designed so that no two 
failures result in crew or passenger fatality or permanent disability. 
In more general terms, the challenges posed by ISHM systems is that it is hard to 

assure completeness of  models of failure, it is hard to assure that those models are 
correct, and it is hard to test/inspect/review the very many failure scenarios. While any 
given failure scenario may itself have a very low likelihood of occurrence, ISHM must be 
prepared to deal correctly with whichever ones do manifest themselves in the course of 
the mission, so V&V must address a large fraction of these to achieve the levels of 
assurance required. 

In response to these questions of feasibility, the response could be to evolve the 
requirements, standards, etc. accordingly, or to leave them as-is and instead rely on 
provisions for exceptions1, deviations2 and waivers3 from these requirements. In practice 
waivers are common. Since they contradict the intent and effect of requirements, and 
introduce inconsistencies in the certification process, it is preferable to recognize early-on 
which requirements cannot be met, and revise these requirements as necessary to 
preclude reliance upon waivers. 

2.2 Sufficiency 
Another question to ask of the existing standards is whether they are sufficient to 

achieve the levels of assurance desired of ISHM systems.  
We begin by noting that even the most stringent of the structural testing levels – 

the Modified Condition Decision Coverage (MCDC), cannot fully test a realistic software 
application. To do so would require “path” coverage, which is by no means guaranteed 
by MCDC. In MCDC each condition is tested largely independently of other decisions in 
the program, and in a program with n decision binary decision points there are 2n 
independent decisions, each of which defines a possible path through the program. Of 
these, the number that are “feasible” (that is, that can actually be executed by some 
combination of input data values) is also on the order of  2n. Thus only a relatively small 
portion of the possible execution paths are tested even under MCDC. For event-driven 
(reactive) systems the situation is even worse. ISHM systems fall squarely into this 
category. As described in the previous subsection, the number of possible behaviors can 
be a huge number, the small proportion covered by MCDC would leave an even larger 
number untested. 

                                                 
1 An exception to a requirement can be provided if that requirement is not applicable to every 

component of the system.  
2 A deviation from a requirement can be provided if the requirement cannot be met but there is an 

alternative method of reducing system risk to an “equivalent or lower” level. 
3 A waiver of a requirement may be requested if the requirement is unsatisfied and there is 

therefore an increased risk. 



Further challenges stem from the unusual structure of ISHM software as 
compared to the more traditional forms of spacecraft software for which the standards, 
etc., were crafted. ISHM software often makes use of Artificial Intelligence techniques, 
and is architected accordingly. Specifically, such software typically has both a large, 
complex “reasoning engine”, and “models” (e.g., a model might describe the operating 
modes of the telecommunications system) over which that reasoning engine operates.  

The implications for V&V are several:  
• conventional approaches to certification, such as measures of code coverage 

used to gauge the thoroughness of testing, do not take into account those 
models. In conventional terms, the models would look like data, and typical 
code coverage metrics would fail to capture the need for coverage of not only 
the reasoning engine’s code, but also the data encoded within the models.  

• the overall ISHM system’s behavior might be sensitive to small changes in 
either of the reasoning engine itself (e.g., a small change to a heuristic might 
lead to drastic changes in performance) or the models (a small change to a 
model might push the reasoning engine into previously unexplored regimes of 
behavior) – it is hard to extrapolate (and therefore hard to know how to test) 
when and how these small changes will affect ISHM behavior 

• the performance (run time, memory consumption, cpu utilization) of 
reasoning engines themselves, because of their heuristic nature, is hard to 
guarantee. If they are operating close to the computational “cliff” (where 
performance degrades rapidly as the problem complexity increases only 
slightly), they will exhibit occasional wild fluctuations from “normal” – for 
many runs it may perform within expected bounds, but once in a while, the 
performance is extremely poor (slow, huge memory usage, …).  

ISHM must correctly report failure conditions, and, importantly, must avoid 
“false alarms”. Both of these require that ISHM take as input uncertain data, and yield 
information and decisions with high(er) certainty. E.g., ISHM needs to distinguish engine 
failure from failure of the sensor(s) monitoring the engine’s health (those sensors are 
fallible devices, and may themselves fail). The ISHM algorithms (and implementation 
thereof) that perform its certainty-increasing process must be extremely reliable, since 
they will be in continuous operation.  

Lastly, many of the systems whose health ISHM is to manage will themselves 
contain software. In such cases ISHM may be expected to be cognizant of the health of 
those systems’ software. However, software “failure” does not completely parallel 
hardware “failure” (software doesn’t “wear out”, rather, during operation a latent defect – 
“bug” – in the software may become manifest in the particular execution path it follows), 
so it is much less understood whether ISHM techniques can accommodate failure modes 
that have their origin in latent software defects (predict them for prognosis purposes, 
diagnose them once they have occurred, and in either case know what to do in response).  

3 OPPORTUNITIES FOR EMERGING V&V TECHNIQUES 
SUITED TO ISHM 

The unusual nature of ISHM software raises both challenges for V&V and 
certification (outlined in the previous section) and opportunities to make use of some new 



and emerging V&V techniques that offer the promise of overcoming some of those key 
challenges. This section describes the origins of those opportunities, and gives some 
representative examples of emerging V&V techniques. 

We have remarked on the prevalence of model-based reasoning within many 
ISHM architectures. In order that ISHM can perform its reasoning (e.g., diagnose the 
cause of a fault from a set of symptoms), those models are designed to be machine-
manipulable – by the ISHM reasoning engine itself. Fortuitously, there has been an 
emergence of V&V techniques suited to various forms of analysis of such models.  

Many of the emerging V&V techniques do their own reasoning – for V&V 
purposes – over the same kinds of models that ISHM utilizes. The adoption of those 
V&V techniques in traditional software settings has always been impeded by the need to 
construct such models by hand, from the various forms of system documentation 
intended for human, but not computer, perusal (e.g., requirements stated in paragraphs of 
English). This has made them costly and time-consuming to use, and as a result their 
application has, in practice, been limited to only the most critical core elements of 
software and system designs (for an in-depth discussion, see [Rushby, 1993]). A 
representative example drawn from the spacecraft fault protection domain is [Schneider 
et al, 1998]’s use of “model checking” was applied to the checkpoint and rollback 
scheme of a dually redundant spacecraft controller. In contrast, in ISHM such models are 
machine manipulable, and available early in the lifecycle. 

Another source of opportunity offered by model-based reasoning is that the 
reasoning software can yield both its result (e.g., a diagnosis), and the chain of reasoning 
that led to that result. That chain of reasoning provides opportunities for cross-checking – 
not only checking that the result is correct, but also that it is correct for the right reasons 
(e.g., all the appropriate information was taking into account when arriving at its 
conclusion). 

Lastly, we observe that the typical architecture of model-based ISHM divides the 
system into a generic, and therefore reusable, reasoning engine, and system-specific 
models. The reasoning engine itself is a non-trivial piece of software, and so the 
correctness of its implementation needs to be checked. However, since it will be reused 
from application to application, the effort it takes to check that implementation can be 
amortized over those multiple applications.  

The table below lists a sampling of the applicability of emerging V&V techniques 
to ISHM V&V needs. Please note that this is not intended to be a comprehensive survey 
of the field. 

 
 
ISHM problem addressed V&V technology 

Assuring the extremely high reliability of 
ISHM’s core algorithms (e.g., voting 
schemes), supportive implementations, etc. 

“Formal methods” (a.k.a. “analytic 
verification”): theorem proving and/or 
model checking 

Verifying key properties of ISHM models 
and systems, and (to some extent) of their 
implementations 

“Formal methods” (a.k.a. “analytic 
verification”) : theorem proving and/or 
model checking 

Achieving highly confidence in the 
correctness of the implementation (coding) 

Program synthesis 



ISHM problem addressed V&V technology 
step by “correct -by-construction” code 
synthesis methods possibly coupled with 
proof checking (significantly aided by 
information left by the construction 
process)  
Assuring with extremely high confidence 
the absence of software implementation 
defects in ISHM software itself 

Static analysis 

Eliciting software and software-system 
failure modes of ISHM’d systems 

Risk analysis methods (SMFEA, SFTA) 

Assessing ISHM’s reliability for the 
software part of systems. 

Probabilistic Risk Assessment (PRA) for 
software systems 

Recognizing symptoms of software defects 
and, to some extent, the potential for 
software defects (i.e., expanding the 
confidence that can be gained from a single 
test run, so in part helping to counter the 
explosion of possible executions that ISHM 
systems manifest). 

Run-time monitoring 

Assuring that the reasoning engine not only 
reached the right conclusion, but did so for 
the right reason (i.e., expanding the 
confidence that can be gained from a single 
test run, so in part helping to counter the 
explosion of possible executions that ISHM 
systems manifest). 

Testing adapted to model-based systems 

Improving (by inspection, review, etc) the 
quality of the “models” on which ISHM 
operates 

Software development practices adapted 
appropriately for models of model-based 
software 

 

4 V&V FOR CONSIDERATIONS FOR ISHM SENSORS AND 
AVIONICS 

Integrated System Health Management (ISHM) relies on information derived 
from sensors by avionics (signal conditioning, data conversion and data processing 
hardware) to assess the state of the system. The performance of the ISHM system is 
dependent upon the fault coverage by the sensors embedded in the space vehicle. The 
quality of data from the sensors and the overall reliability of the hardware of the ISHM 
system are critical to ISHM performance. In addition to meeting functional requirements, 
the ISHM system must be certified to operate reliably in the space environment. 
Environmental requirements for certification will include launch vehicle dynamics 
(vibration, shock and acoustic), thermal environments (orbital and re-entry), 
electromagnetic compatibility, and radiation (primarily single-event effects, since man-
rated vehicles typically minimize exposure to trapped radiation environments).  



 
ISHM Hardware Certification 
Spaceflight hardware certification ensures that the ISHM hardware meets 

specified design, manufacturing, life, and environmental requirements. For new hardware, 
preliminary and critical design reviews are conducted to ensure that all basic safety, 
reliability, and quality assurance requirements are met. A certification requirements 
document identifies and defines the induced and natural environments and methodologies 
used in the certification approach. Certification consists of qualification testing and 
analysis at the highest practical level of assembly, installation, or system. Qualification 
testing must consider functional, environmental, and life requirements. Certification may 
be achieved by analysis when testing is not necessary, feasible, or cost-effective.  

 
Spaceflight Hardware V&V 
Spaceflight hardware is generally developed via a requirements-driven process 

where the capabilities, performance specifications and physical characteristics are 
developed within the constraints of mission resource allocations. High-level (system) 
requirements are translated into lower-level requirements, ultimately resulting in 
specifications that become the basis for hardware design. Validation is performed via 
thorough requirements traces (upward and downward) to ensure correct requirements are 
established at all levels. Throughout the hardware development, the compliance of the 
hardware design with the requirements is verified early in design reviews and later, in the 
hardware test program. Often a matrix is generated and maintained to track the 
verification of the hardware against requirements on that hardware. A performance 
baseline for verification of hardware functionality is established prior to subjecting the 
hardware to a battery of environmental tests. Abbreviated functional testing is frequently 
performed during the series of environmental tests (i.e. between vibration tests on each 
axis of the hardware). Testing of payload or subsystem avionics hardware is generally 
performed at the electronics box level prior to delivery to the space vehicle for integration. 

 
System-level functional testing is often performed with engineering model or 

prototype subsystem hardware early in the integration phase. Testbeds are frequently 
employed to develop system-level functionality (command and data handling 
subsystems). Flight hardware can be verified in testbeds that have the appropriate 
interfaces and hardware protection. During integration of the space vehicle, flight 
hardware subsystems are typically connected to the space vehicle power and data systems 
via a “safe-to-mate” verification procedure. Pin-level verification of the interfaces are 
performed through “break-out box” equipment until the unit being integrated has been 
powered and proper communication is verified. Only then unit is directly mated to the 
flight system connectors. After all of the flight hardware has been integrated, system-
level testing is completed. Robotic spacecraft typically undergo system-level 
environmental testing (EMI/EMC, vibration, acoustic, system thermal-vacuum tests) to 
verify system performance in simulated launch and space environments.    

  
Sensor Data V&V 
Due to the potentially large number of sensors, many of which are exposed to 

harsh environments, the ISHM system must be tolerant of sensor faults. The processes for 



the selection, qualification and installation of sensors are important factors for 
minimizing sensor faults. An ISHM system should be able to validate sensor readings and 
diagnose sensor faults in real-time. The area of Sensor Failure Detection, Isolation and 
Accommodation (SFDIA) is being addressed by a several approaches. 

 
There are two conceptually different approaches to the SFDIA problem: physical 

and analytical redundancy. Traditional flight control systems deploy triple or quadruple 
physical redundancy in their network of sensors to achieve the level of reliability 
necessary for manned spacecraft or aircraft certification. Physical redundancy SFDIA 
techniques are based on voting and mid-value selection schemes. It is clear that there are 
penalties such as mass, power, volume, and cost associated with a physical redundancy 
approach to the SFDIA problem. 

 
Most of the current research activities on SFDIA focus on the use of analytical 

redundancy techniques. A partial list of analytical SFDIA techniques includes 
Generalized Likelihood Ratio (GLR); Multiple Model (MMKF), Extended, and Iterative 
Extended Kalman Filtering (MMKF, EKF and IEKF); Sequential Probability Likelihood 
Ratio Test (SPLRT), and Generalized Likelihood Test/Maximum Likelihood Detector 
(GLT/MLD).These techniques feature a continuous monitoring of the measurements 
from the sensors. At nominal conditions, these signals follow some known patterns with a 
certain degree of uncertainty due to the presence of system and measurement noise. 
However, when sensor failure occurs, the observable outputs deviate from the predicted 
values calculated on-line or off-line from estimation scheme generating a residual. A 
sensor failure can be declared when the associated residual exceeds, for a single or for 
multiple, time instants, a certain numerical threshold. 

 
Analytical redundancy and Bayesian decision theory was combined to produce a 

sensor validation system concept for real-time monitoring of Space Shuttle Main Engine 
telemetry.i The validation system, as illustrated in the block diagram below (Figure 1), 
was implemented in Ada and hosted on a Boeing X-33 prototype flight computer (R3000 
at 25 MHz). SSME telemetry was played back at real-time rate through the system at the 
Marshall Avionics System Testbed (MAST). Data from 50 SSME flight firings were 
processed at real-time rates and 3 sensor failures were correctly identified. 

 



 
Figure 1. Block diagram for the real-time SSME sensor data validation concept 

developed by Bickford, et al. 
 
More recently, neural network (NN) approaches to sensor data validation have 

been developed. As an example, data from a Boeing 737 was processed via a NN-based 
on-line learning scheme.ii The Extended Back Propagation (EBP) algorithm was used by 
the authors for the on-line learning. The algorithm was selected for its performance in 
terms of learning speed, convergence time, and stability when compared to the 
conventional Back Propagation (BP) algorithm. The SFDIA scheme is illustrated in the 
block diagram shown in Figure 2. It consists of a main NN (MNN) and a set of ‘n’ 
decentralized NNs (DNNs), where ‘n’ is the number of the sensors in the flight control 
system for which a SFDIA is desired. The outputs of the MNN replicate, through on-line 
prediction, the actual measurements from the ‘n’ sensors with one time instant delay, that 
is a prediction of the state at time ‘k’ using measurements from ‘k-l’ to ‘k-p’ to be 
compared with the actual measurement at time ‘k’. In their study, the authors processed 
flight data obtained from about 10,000 seconds of B737 flight recorder data to train the 
MNN and DNNs. Simulated sensor failures were injected to test the response of the NN. 
They were able to demonstrate rapid on-line learning and proper identification of a 
variety of sensor failures both hard (complete sensor signal loss) and soft (drift) and to 
have the failed sensor data accommodated by the physical model adapted by the on-line 
learning process. 

 



 
 Figure 2. Block diagram of NN SFDIA scheme showing result of a failure in 

Sensor #1. 
 

 
 



5 SUMMARY 

It is apparent that a combination of several V&V approaches will be required for 
ISHM. For example, depending on the ISHM architecture, traditional testing approaches 
may be adequate and appropriate for some layers of ISHM functionality, whereas the use 
of AI techniques such as reasoning under uncertainty and mission planning (and re-
planning) have characteristics that set them apart and challenge standard V&V techniques. 
Most notably, AI techniques based on explicit use of model-based reasoning exhibit 
algorithmic and implementation intricacies (within their AI reasoners themselves) on a 
par with other complex software systems, but in addition the behaviors they may exhibit 
during operation depend critically on the models themselves (elements that traditional 
V&V has not had to deal with). Fortuitously, the additional V&V challenges their model-
based nature gives rise to are balanced by the enhanced opportunities to apply certain 
V&V techniques, especially those based on analytic methods.  

The function of ISHM is to increase the reliability of the system whose health it 
manages. To do this, ISHM must, in the vast majority of cases, correctly ascertain the 
status of the system, despite the fallibility of both the system itself and also the sensors 
that monitor the status of the system. Thus the reliability of the ISHM’s core functionality 
(e.g., its voting algorithms that adjudicate among multiple – some possibly erroneous – 
readings from multiple sensors) must be among the most reliable software systems on the 
entire vehicle. These considerations, coupled with the non-traditional architecture that 
many ISHM systems employ (notably model-based reasoning), call into question both the 
feasibility and adequacy of existing standards, practices, etc., for V&V and certification if 
they are to encompass ISHM. Overall, therefore it is necessary to modify V&V and 
certification requirements to permit its use, to find the right mix of V&V and certification 
to match the architecture of the vehicle and ISHM system, and to guide the maturation of 
emerging V&V techniques to become capable of this function. 
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